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Between Space Syntax and Transportation Planning 

Understanding the trade-offs between accuracy and complexity of Space Syntax 

and Transportation planning approaches to explain movement. 
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Traditionally, explaining how and why people move has been the domain of transportation 

planning (TP). In general, TP models take into account the sociodemographic characteristics of 

the population and the utility of available destinations and modes of transport. As a result, these 

models provide accurate and detailed insights into the effect of planning decisions on the 

mobility pattern in a given area. However, these insights come at the cost of a large amount of 

data required to calibrate and run the TP models. An alternative approach proposed by Space 

Syntax scholars explains movement as a function of the configuration of urban form. This 

approach gained attention due to its simplicity and applicability in the context of developing 

countries or early design stages when much information required by the TP model is simply not 

available. Despite the apparent advantages of the Space Syntax approach, it is unclear what is the 

effect of its simplicity on the accuracy of the resulting movement model. 

Thus, in this study, we investigate the trade-offs between the complexity and accuracy of the TP 

and Space Syntax models in the scope of empirical study in Weimar, Germany. Our results 

suggest that the Space Syntax model provides valuable insights into the overall movement 

pattern. However, its accuracy drops below the acceptable standards when evaluating the traffic 

flows at the most frequented locations. Here, the more complex TP models are required. If 

confirmed by future studies, these findings provide guiding principles for the movement model 

selection in the context of urban planning. 

()*+,%-#'

Transportation, Movement, Accuracy, Complexity, Modeling  



                Proceedings of the 13th Space Syntax Symposium  

Between Space Syntax and Transportation Planning  2 

. /0$%,-1&$/,0'

Understanding how people move is a key aspect of urban planning and policymaking. The 

discipline traditionally dealing with the issues related to mobility is transportation planning. To 

devise and evaluate plans, the transportation planning scholars deployed a multitude of models 

able to assess the impact of design decisions on where people go and how they get there. If the 

task at hand is to devise large-scale infrastructural decisions with high costs and long-term 

impact, transportation planners usually employ the macroscopic class of transportation models. 

These models do not reveal much about the choices and behaviour of individuals; however, they 

are able to explain and predict the movement pattern on an aggregated scale.  

 

The four-step model is the standard approach in the macroscopic modelling of transport demand. 

It is based on the human activity approach to transportation modelling (Fox, 1995; Jones et al., 

1983), revolving around the idea that the purpose of individual travel is not to reach a given 

location but to fulfil individual needs (e.g., hunger) by performing particular activities (e.g., 

visiting a restaurant). Additionally, it is assumed that people tend to maximize the utility of each 

trip and minimize its costs by choosing among different destinations, paths, and modes of 

transport. 

 

The respective parts of the macroscopic transportation planning model (TPM) formalizing the 

above-mentioned concepts are 1) Trip generation, 2) Trip distribution, 3) Mode choice, and 4) 

Trip assignment. Without going into the details, the TPM combines the sociodemographic data 

with the distribution of economic activity and characteristics of the transportation infrastructure 

to estimate where people go and how they get there (Mcnally et al., 2000). 

 

In addition to TPM, an alternative approach to understanding and explaining movement was 

proposed by Hillier and Hanson (1984) under the term Space Syntax. It encompasses a variety of 

theories and methods for the analysis of space and its effect on human behaviour.  

 

The Space Syntax method revolves around graph theory – a field of mathematics specialized in 

quantifying configurational characteristics of relational systems. When it comes to explaining 

movement, the spatial graph used by Space Syntax scholars is based on lines of movement1s (i.e., 

graph nodes) and their relationships (i.e., graph edges). It is important to note that spatial graphs 

are routinely applied in the field of geography; however, what makes the Space Syntax approach 

unique is the definition of relationship (i.e., distance) between different locations. Instead of the 

commonly used metric or temporal distance, the Space Syntax model embraces two versions of 

cognitive distance. The early development came together with the topological distance and was 

later extended by angular distance (Dalton, 2001; Turner, 2001). The rationale behind the Space 

 
1 Space Syntax method employs several representations urban space such as visual axes (i.e. axial 
map), their segments (i.e. segment map) or street center lines. 
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Syntax model (SSM) is based on the assumption that, in general, people do not choose the metric 

shortest but cognitively easiest path when navigating through the urban environment.  

 

The most important feature of the SSM is that this abstract model of urban form has the ability to 

explain how people move. As Penn, (2003) claimed, the Space Syntax approach can explain 60 to 

80% of the variance in movement flows as an effect solely of the street network configuration. 

The simplicity of SSM is of great value in cases such as early design stages or planning in the 

context of developing countries when only limited information on sociodemographic 

characteristics of inhabitants and distribution of economic activities is available. Here, the “light-

weight” SSM approach often provides the only feasible alternative to the “data-hungry” four-step 

TPM model. 

 

Despite the apparent advantages of the SSM, it remains a topic of ongoing discussion how a 

model with no information about where people are and what they need provides any meaningful 

insights about how people move. Nevertheless, the strong association between the 

configurational measures provided by SSM and the distribution of movement flows has been 

repeatedly empirically confirmed throughout geographies, scales, and modes of transport (Hillier 

and Iida, 2005; Lerman et al., 2014; Turner and Dalton, 2005). 

 

Hillier addressed the controversy surrounding the SSM in his seminal paper with the suggestive 

subtitle “why space syntax works, when it looks as though it shouldn’t” (Hillier, 1999). He 

provides a theoretical argument saying that the distribution of people and activities follows the 

movement potential given by the urban form, and this “natural movement potential” is amplified 

by a feedback cycle between movement and activity distribution pattern. Consequently, since 

everything follows the urban form, no additional information is needed to explain the movement.  

 

It is important to say that even though the argument is logically sound, it has never been 

empirically tested and as pointed out by Ratti and others (Pafka et al., 2020; Ratti, 2004), there 

might be many cases when it does not hold in the real world. This objection is well reflected in 

the Space Syntax literature, with authors finding highly varying fitness of the identical SSM 

approach when explaining movement at different locations. For instance, Schneider et al. found 

that SSM accounts for only 38% of explained variance in vehicular traffic in small German towns 

(Schneider et al., 2017), while Hillier was able to explain up to 77% of the variance in vehicular 

movement in the London’s district of Clerkenwell (Hillier and Iida, 2005). In other words, in 

some cases, the movement is almost entirely the product of urban form, while in others, the urban 

form plays a much smaller role with other factors driving how people move. Thus, on the one 

hand, it is unquestioned that the SSM is a practical approach when explaining the effect of urban 

form on movement; on the other hand, it remains unclear what is the overall explanatory power 

of SSM.  
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It must be mentioned that the uncertainty about the explanatory power of SSM does not pose any 

conceptual difficulty for the Space Syntax scholars who treat SSM as a model of urban form with 

the ability to explain the movement, instead of a model of movement based on urban form 

(Hillier, 1999). However, we argue that this brings up significant difficulties in the practical 

application of SSM. Since it is impossible to assess the explanatory power of the SSM model 

when evaluating the impact of design decisions on future movement, it is difficult to base any 

decision on such a model. In other words, it is hard to say if and how a large effect suggested by 

the SSM is going to translate into reality. 

 

This might suggest that the traditional TP approach might be preferred over the SSM when it 

comes to practical application. Nevertheless, as already pointed out, the major limitation of TPM 

is the demanding data acquisition and model calibration. As a result, there is no single best 

approach, but the SSM and TPM seem to have their individual trade-offs between explanatory 

power (i.e., accuracy) and model building costs. This is perfectly aligned with the much broader 

statement that models differ in their approaches depending on the modeler’s purpose and 

resources (Minsky, 1968). The problem in the case of macroscopic movement modelling when it 

comes to SSM and TPM lies in our lack of knowledge about the costs-accuracy trade-offs of the 

individual models. 

.2; %3435678'<=34>?@A'

To enhance our ability to choose the best model for a given purpose, we must know how the 

model costs (i.e., the data required to set up, calibrate and run the model) relate to the model 

performance (i.e., prediction accuracy or explanatory power of the model). Moreover, we do not 

only want to know how the fully specified TPM approach performs when compared to the SSM 

but also how it’s individual parts contribute to the overall accuracy. For this purpose, we 

represent each part of the four-step TPM as a layer of information increasing the complexity of 

the movement model (i.e., increasing its costs) when compared with the SSM. In other words, we 

can imagine a series of models starting with SSM as the simplest model and ending with TPM as 

a fully specified and most complex model.  

 

The resulting question is how the additional data and computation related to each subsequent 

model contributes to the model accuracy? The underlying research hypothesis is based on the 

assumption that as the model complexity increases, the accuracy will increase. However, the 

overall goal of this study is not only test the positive relationship between the model complexity 

and accuracy but to quantify the respective effects. 

.2B C?D?>5>?@A4'

In this study, we investigate the trade-offs between the complexity and accuracy of TPM and 

SSM approaches to explain the distribution of movement flows. We restrict our study to 
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macroscopic modeling of individual vehicular traffic as this is the traditionally most widespread 

application of TPM. Nevertheless, the research methodology devised in this study can be readily 

applied to other modes of transport, such as cycling, walking, or public transport, as these are 

rapidly gaining importance in the context of urban mobility. This restriction effectively reduces 

the complexity of the study design as the “mode choice” step of the TPM can be ignored.  

Furthermore, we simplify the “trip assignment” step of TPM by assuming that in the given case 

study of Weimar, Germany, the road capacity does not play a significant role. In other words, 

there is no congestion affecting the path choice when undertaking a travel. This simplification is 

based on previous research and empirical evidence from Weimar and serves to simplify the 

testing procedure further. By doing this, we focus our study on quantifying the effect of the first 

two steps of the TPM approach -  the trip generation and trip distribution on the model accuracy. 
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We devise a series of empirically calibrated models explaining the individual vehicular traffic in 

the administrative boundaries of the city of Weimar, Germany. Each model represents a different 

level of complexity expressed by the first two steps of the four-step TPM approach (i.e., trip 

generation and trip distribution). If we render the information embedded in each step as a distinct 

dimension of model complexity, we arrive at a two-dimensional space (Figure 1a). For the sake 

of simplicity, we treat each axis of the complexity space as a discrete variable (i.e., it is either 

fully defined or not) which results in four different options for how to specify the traffic model 

(Figure 1b). At location [1,1], we have the fully specified model containing the information about 

a) how much traffic is generated and attracted by each location (i.e., trip generation) and b) how 

traffic is distributed between each origin and potential destination by considering the costs and 

utility of each trip.  

 
Figure 1: Movement model complexity represented in 2-dimensional space. A) continuous model 

complexity. B) Discretized model complexity. 
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The specificities of the calculation and required data are covered in the following section. The 

important thing to realize is that the fully specified model has the highest complexity as it carries 

the most information and is considered the base model. All remaining models systematically 

leave some portion of the fully specified model out, with the SSM at the location [0,0] (Figure 

1b) being the simplest and most restricted model. 

 

To quantify the effect of information included in each model on its accuracy, we measure the 

deviation of the movement flows predicted by the restricted models from the prediction of the 

base model – the fully specified model. The deviation from the fully specified model represents 

the loss of accuracy, which is to be attributed to the model restriction (i.e., the simplification 

achieved by leaving some information out). We want to note that one could also compare all four 

models to empirical traffic data if these are available. Nevertheless, due to the absence of 

empirical data on vehicular traffic, we treat the fully specified TPM as the ground truth and 

measure how restricted models with lower complexity deviate from it. 

;2; E@G3J'-3K?A?>?@A'

In the following, we define the two axes of model complexity in their specified as well as the 

restricted state. We start by introducing the TPM as a model specified on both axes and continue 

with the description of SSM as a completely restricted model. Finally, we introduce the 

remaining two models as different combinations of SSM and TPM. 

 

Fully Specified Model 

The standard approach of TPM is the four-step model which is described by Ortúzar Salar and 

Willumsen as: “The approach starts by considering a zoning and network system, and the 

collection and coding of planning, calibration and validation data. These data would include 

base-year levels for the population of different types in each zone of the study area as well as 

levels of economic activity, including employment, shopping space, educational and recreational 

facilities. These data are then used to estimate a model of the total number of trips generated and 

attracted by each zone of the study area (trip generation). The next step is the allocation of these 

trips to particular destinations, in other words, their distribution over space, thus producing a trip 

matrix. The following stage normally involves modelling the mode choice, which results in 

modal split, i.e., the allocation of trips in the matrix to different modes. Finally, the last stage in 

the classic model requires the assignment of the trips by each mode to their corresponding 

networks: typically private and public transport.” (Ortúzar Salar and Willumsen, 2011, p. 21)  

Trip Generation - Specified 

Lohse (2011, p.254) defines a general model for a specific production, meaning the number of 

trips starting in a zone, 𝑂!" of trips based on sociodemographic homogenous groups (e.g., 

Working population with a car; pensioners; students) 𝑔 and activity chains 𝑎 with a specific 

mobility rate 𝑀𝑅#  

𝑂!" ='𝑀𝑅# ∗ 𝑛"
#
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Which can then be summed up over all sociodemographic groups 𝑔 to calculate the overall 

production of an origin 𝑂!: 

𝑂! ='𝑂!"
"

 

The calculation of the specific production can also be executed with more detail: For each 

sociodemographic group, a specific mobility rate for activities (e.g., going to work; shopping) or 

for an activity chain, describing a series of activities starting and finishing at home (e.g., home-

work-shopping-home) can be used.  
 

A similar calculation to the production can be developed on the attraction potential 𝐷 of a 

destination 𝑗 based on the generalized attraction rate 𝐴𝑅$ of a structural property (e.g., number of 

workplaces; retail space) 𝑠 and the value/size of the structural property 𝑥$: 

𝐷%$ = 𝐴𝑅$ ∗ 𝑥$ 

Summed up overall structural properties 𝑠, the overall attraction 𝐷% of a destination 𝑗  is 

calculated: 

𝐷% ='𝐷%$
$

 

It has to be noted that the attraction potential is just a potential. It does not necessarily need to be 

fulfilled. A further discussion of the need to fulfill the potential can be found in (Lohse, 2011, 

pp.247-249). 

 

Trip Distribution - Specified 

The trip distribution describes the selection of destinations for trips. In general, these models all 

aim to resemble the decision of a homo oeconomicus, which makes their decision with the goal to 

maximize the utility (by reaching the best option with the least effort). The first models to 

resemble the trip distribution were based on an analogy with Newton’s gravitational law and 

therefore called gravity models. According to Ortúzar Salar and Willumsen (2011, p.182), the 

resulting traffic 𝑇!% can be calculated based on the population 𝑃 of the zones 𝑖 and 𝑗 , the distance 

between the two zones 𝑑!% and a factor 𝛼: 

𝑇!% =	
𝛼 ∗ 𝑃! ∗ 𝑃%

𝑑!%&
 

The model was developed further, first by replacing the populations with the production and 

attraction values gained from trip generation and then by replacing the term 𝑑!%&  by a distance 

decay function 𝑓(𝑐!%). It represents the utility of destination as an inverse relationship between 

costs and distance, as depicted in Figure 2. Ortúzar Salar and Willumsen (2011) refer to this 

function as:” ‘deterrence function’ because it represents the disincentive to travel as distance 

(time) or cost increases.”. The resulting equation results to: 

 
𝑇!% = 𝛼 ∗ 𝑂! ∗ 𝐷% ∗ 𝑓(𝑐!%) 
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The distance decay is traditionally expressed via the Logit function resulting in the following 

specification: 

𝑇!% = 𝛼 ∗ 𝑂! ∗ 𝐷% ∗ 𝑒'∗)!" 

 

 
Figure 2: Logit distance decay function. Beta coefficient = 0.0002 (in m) was used in the specified distance 

decay function. 

Fully Restricted Model 

Coming to the completely restricted SSM approach, we argue that the betweenness measure of 

graph centrality ( i.e., the “choice” in Space Syntax jargon) as a measure used by Space Syntax 

scholars to explain movement can also be interpreted as a restricted case of the TPM. The 

betweenness centrality was introduced by Freeman (1977) as an indicator of the importance of 

nodes in a social network and later adapted by geographers as a measure of flow in spatial 

graphs. “Considering all shortest paths in a network between all possible pairs of nodes, we can 

find out how often a node happens to be on the shortest path between two other nodes.” (Nourian 

et al., 2015, p11). 

𝐵𝐶* = ' 𝜎!,%(𝑣)
,

!-.,	%-.,	!0%,1!"23

 (X) 

The betweenness centrality can also be interpreted as a restricted case of TPM, assuming a) 

homogenous distribution of population throughout the network and b) that distance does not 

affect our choice of destination2. More specifically, the trip generation and trip distribution can 

be described as follows: 

Trip Generation - Restricted 

The SSM approach utilizes the unweighted betweenness centrality as described above. If 

interpreted in terms of the TPM, it does not differentiate between sociodemographic groups with 

various mobility rates and assume a homogenous population with equal distribution over space. 

𝑂! = 1 

 
2 All destinations in given radius are treated as equally attractive. 
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Similarly, the attraction potential of all destinations is constant. 

𝐷% = 1 

Trip Distribution - Restricted 

The betweenness centrality adopted by Space Syntax scholars is based on the cumulative 

accessibility measures. All destinations in a given distance radius are equally likely to be visited 

(Bhat et al., 2002). This representation of the distance decay function (see Figure 3) is the 

simplest approach to modelling the relationship between the distance and attractivity of the 

destination (Handy and Niemeier, 1997). Despite the ease of calculation and interpretation, 

cumulative accessibility has been often criticized for “the lack of a behavioral dimension and the 

incapability to model the differences in the perception of near and far opportunities, i.e., 

opportunities are equal regardless of their cost and desirability for users” (Cascetta et al., 2016). 

To represent the utility of the cumulative accessibility by means of the distance decay functions 

defined in the specified trip distribution, we restrict the beta coefficient of the logit distance 

decay function to zero. This is equivalent to betweenness centrality radius N (i.e., traveling from 

all nodes to all other nodes) and results in the following specification: 

𝑇!% = 𝛼 ∗ 𝑂! ∗ 𝐷% 

 
Figure 3: Cumulative distance decay function. Beta coefficient = 0 was used in the restricted distance decay 

function. 

;2B E@G3J',L36L?3M'

To summarize, we briefly present the specification of the four different movement models 

devised in this study. Each movement model is composed of the trip generation and trip 

distribution step. What makes them different is the complexity of each step as it can take the 

restricted (i.e., simple) form or specified form (i.e., more elaborated, more complex). 

Important to mention is the representation of the transportation system (TS), which can be 

thought of as the basis for any calculation in the individual steps of the movement models. In the 

TS, we specify the representation of a) of the street network geometry, b)  the origins and 

destination of movement (i.e., traffic zones), and c) the distances. Traditionally, the TS is defined 

differently in TPM and SSM; however, to compare different models and quantify the effect of 
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their complexity on the accuracy, they all must be based on the same underlying TS. Thus 

movement models employed in this study are based on a) network geometry represented as a 

simplified center-line map, b) origins and destination zones represented at each street segment, 

and c) the traditional metric representation of distance3 augmented by cognitive distance4 

proposed by Turner (2001).  

The resulting movement models are defined as follows: 

• M1 |  Fully specified model (i.e., base model) with the trip generation and trip 

distribution steps defined in their complex form. This means that information on the 

distribution of sociodemographic characteristics of the population and economic 

activities is considered in the first step of the model. In the second step, the utility of 

each potential destination is taken into account. 

• M2 | Partially specified model with the trip generation step specified as in the TPM and 

trip distribution step is restricted as in SSM. Compared to the fully specified base model 

M1, the utility of all potential destinations is independent of their distance. 

• M3 | Partially specified model with the trip generation step restricted as in the SSM and 

trip distribution step specified as in TPM. Compared to the fully specified base model 

M1, the trip generation step assumes that the distribution of sociodemographic 

characteristics of the population and economic activities is equal throughout the whole 

network. 

• M4 | Restricted model with both the trip generation and drip distribution steps restricted 

as in the SSM. This model assumes equal distribution of population with homogenous 

travel demand. Furthermore, the distance of the potential destination does not affect its 

attractivity. 

;2N -5>5'O'#@K>M563'/D:J3D3A>5>?@A'

The empirical study was conducted in the administrative boundaries of Weimar - a historical, 

mid-size city located in the German state of Thuringia. The size of the city - 64855 inhabitants on 

84,420 km2 (Statistisches Jahruch, 2018) makes it possible to cover and analyze the city as a 

whole, which eliminates the ‘edge effect’ that can bias the partial analysis of larger urban 

systems (Gil, 2015). 7 F 7 F  

 

The street network geometry of Weimar is represented as a street center-line map manually 

adjusted at the intersections to accommodate the requirements of the angular shortest path 

calculation as described by Krenz (2017). The resulting network consists of 4624 line segments. 

 
3 Metric distance is used in the trip distribution step to asses the utility of various destinations via 
the logit distance decay function. 
4 Angular distance is used to calculate the shortest paths between the origins and destinations of 
travel. 
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The specified trip generation and trip distribution steps are based on the City of Weimar’s official 

traffic model5. The model consists of 113 traffic analysis zones (TAZ) representing the City of 

Weimar and some adjacent villages. The traffic zones are mapped on the underlying street 

segments, resulting in 4624 individual traffic zones. 

 

The default calculation in the model consists of a tour-based approach with simultaneous trip 

distribution and mode choice. The demand model uses seven sociodemographic groups and six 

activities, which are combined into 36 activity chains. The trip generation uses specific mobility 

rates for each of the 107 combinations of sociodemographic group and activity chains (demand 

strata).  

 
Table 1 - Sociodemographic groups used in the model. 

AzuBi Students in vocational education 
EmP Working population with a private car 
EoP Working population without a private car 
NEmP Non-working population with a private car 
NEoP Non-working population without a private car 
Sch<18 Pupils 
Sch>=18 Students in higher education 

 
Table 2 - Activities used in the model. 

A Work 
B Vocational/higher Education 
E Shopping 
P Private Errands 
S School 
W Home 

 
The trip distribution uses a logit function with a generalized impedance in the distance decay 

function. The mode choice uses a Logit function with the distance, travel time, and access and 

egress times as impedances in the distance decay function.  

 

The modeling of trip generation, trip distribution, and mode choice was done in PTV VISUM 17, 

a program aimed at the modeling of macroscopic traffic flows. The angular shortest paths were 

calculated by the DeCodingSpaces plugin for Rhino3d/Grasshopper6. 

 
5 The official traffic model for city of Weimar was created by traffic planning office 
Verkehr2000. 
6 For all computational analyses presented in this study, we used the version 2021.07 accessed 
and published in July 2021 from https://toolbox.decodingspaces.net/. 
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After calibrating and running the four traffic models, we normalize and visualize the resulting 

distribution of traffic flows (Figure 4). Due to different model specifications (e.g., population 

size, population demography, mobility rates), the resulting distributions are comparable only on a 

relative scale. For this purpose, we normalize the traffic models in such a way that we keep the 

overall traffic volume7 constant across the individual models, as described by Bielik (2021).  

 
Figure 4: Distribution of log-transformed traffic flows calculated by fully specified M1 model (i.e., TPM), 

partially restricted M2 model, partially restricted M3 model and fully restricted M4 model (i.e., SSM). 

We observe that all four models show closely related patterns of traffic flow. They all highlight a 

similar set of most frequented streets and streets with low vehicular traffic. The visual 

 
7 Traffic volume at given street segment represent the total number of vehicles driving through 
per given period of time. Relative traffic volume can be approximated by multiplying traffic 
frequency by the length of each street segment. 
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similarities between the models are reflected by their linear relationships captured by Pearson’s 

correlation coefficient r. As presented in the hierarchically clustered correlation matrix (see 

Figure 5), we observe that all models are highly correlated and significant (p < 0.05), with r 

ranging between 0.937 and 0.998. Additionally, the matrix reveals two groups of linearly almost 

identical models, as also highlighted by the hierarchical clustering (Figure 5). The first group 

consists of models M1 and M2, while the second consists of M3 and M4. When comparing the 

two groups, the main difference lies in the definition of the trip generation step. In models M1 

and M2, the distribution of sociodemographic characteristics of the population and economic 

activities is considered, while in models M3 and M4, it is ignored. Since the only difference 

between the models within the two groups is the specification of the trip distribution step, it 

seems that its effect on the model outcome is only minor.  

 
Figure 5: Hierarchically clustered Pearson’s correlation matrix for models M1, M2, M3 and M4. 

 

To quantify the effect of the model complexity on its accuracy, we compare the restricted models 

M2, M3, and M4 with the fully specified base model M1. We quantify the accuracy by 

calculating the linear fit between the restricted and base model (see Figure 6). In other words, we 

regress the fully specified model on the restricted model and derive the goodness of fit – r 

squared. This represents in a range from 0 to 1 how much variance does the restricted model 

share with the fully specified model. If they are completely identical (i.e., no loss of accuracy can 

be observed), we get 𝑟& = 1. At the other extreme, if they do not share any variance, we would 

observe 𝑟& = 0. 

 

We found that model M2 shares 99,6% of the variance with the base model M1, as also visible 

from the scatterplot in Figure 6a. Since the only difference between M1 and M2 is the 

specification of the distance decay function in the trip distribution step, the results suggest that its 

effect is negligible. Coming to model M3, we see a drop in accuracy with 87,7% shared variance 

with the base model. Finally, we observe model M4 sharing 91,8% of the base model variance. 

This comes as unexpected as the M4 is the simplest model representing the SSM approach while 
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the M3 is augmented by the distance decay function found in the TPM approach; however, M4 

performs slightly better than the more complex M3. 

 

 
Figure 6: Scatterplot capturing the linear relationship between the reference model M1 (i.e., fully specified 

TPM) and a) partially restricted M2 model, b) partially restricted M3 model and c) fully restricted M4 
model (i.e., SSM). 

In addition to the linear regression method, we quantify the fitness of the restricted models M2, 

M3, and M4 via scalable quality value (SQV)  - an established method used in the field of 

transportation planning. The SQV is a quality measure in which the deviation of observed and 

modelled values is analysed. The metric was developed and first described in (Friedrich et al. 

2019), and the authors define it as: 

𝑔456 =	
1

1 +	B(𝑚 − 𝑐)&
𝑓 ∗ 𝑐

 

Where 𝑚 is the modeled value and 𝑐 is the observed value. The factor 𝑓 is a scaling factor for the 

magnitude of the values. The main conceptual difference between SQV and the r-squared derived 

from the linear regression is that SQV does not measure the linear fit between two variables but 

rather the deviation of two observations. This deviation is normalized to range from 0 to 1 and 

can be calculated for each street segment. Traditionally, SQV is calculated for a set of locations 

for which traffic counts exist. As the nature of the study does not allow for a comparison with 

real-world counting data, we treated the data from M1 as the observed data and the other models 

as calculated values. This would be possible to calculate for all network elements, but the results 

would be not very usable, as on some links, traffic load is very small and does not change much 

through the different modelling approaches. This would lead to very good SQV values, but those 

would not be very representative for the changes in the model. Therefore, we have decided to 

calculate the SQV values for twelve relevant locations in the street network where we expected to 

see changes in the traffic load. These locations (see Figure 7), where one would also set up 

counting locations, can be grouped into four groups: locations on main arterial roads (2,4,5,8,10), 

locations on the inner (1,3) or the outer (12) ring road and on important tangential connections 

(6,7,9,11).  



                Proceedings of the 13th Space Syntax Symposium  

Between Space Syntax and Transportation Planning  15 

 
Figure 7: Location of segments chooses for the SQV test. The map is showing the traffic flows derived 

from the fully specified M1 model. 

For the interpretation of the SQV we adopt the categories recommended by Friedrich et al. 

(2019). They suggest to interpret SQV > 0.9 as “very good match”, SQV > 0.85 as “good match” 

and SQV > 0.8 as “acceptable match”. We found high variation in the SQV statistics across the 

location and different models. The best mean SQV across all selected locations was measured for 

the M2 = 0.83, which is to be considered as an acceptable match. However, as displayed in 

Figure 8, the SQV varies a lot, with the minimum as low as 0.37 while the maximum reaches 

0.99. The remaining two models M3 and M4 have similar mean SQV of 0.72 and 0.71. As such, 

the model M3 and M4 are deemed as unacceptable. 

 
Figure 8: Box plot visualization of the SQV statistics for 12 selected street segments per model. Full line 

inside of the box represents median, dashed line represents mean. 
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In this study, we devised a series of models for individual vehicular traffic in the German city of 

Weimar to measure how the level of model complexity affects its accuracy. It is important to note 

that all results discussed in this paper are bound to one particular study area, and any 

generalization would require confirmation of our results in further studies.  

 

With this in mind, we found that when it comes to modeling vehicular traffic, the specification of 

the sociodemographic characteristic of the population and the distribution of economic activities 

have a major impact on the model accuracy. When ignored, the resulting models were missing 

between 8,2% to 12,3% of the variance compared to the fully specified model. This means that 

the simplest SSM model provides high accuracy of 91,8% when looking at the city as a whole. 

As such, this underlines the value of the SSM in the context of limited resources or missing or 

information to calibrate and run the more complex TPM. Nevertheless, when looking only at the 

most frequented streets, the SSM accuracy drops below the acceptable standards set in 

transportation planning and needs to be replaced by a more complex movement model, including 

more detailed methods for route assignment. 

 

Furthermore, we found that in the case of the individual vehicular traffic in Weimar, the 

specification of the distance decay function (i.e., effect of distance on the utility of the 

destination) does not play a significant role. In other words, all destinations can be considered 

equally attractive regardless of their distance. We run the Chi-Square Test for Independence 

comparing pairs of models differing only by the specification of the distance decay function and 

found that both can be considered as coming from the same distribution (p < 0.05). We argue that 

this might be the result of the relatively small size of Weimar’s traffic system as the difference 

between the specified and restricted decay function grows with the trip size (see Figure 9). 

Nevertheless, the results of M2 show differences in the traffic load, especially on those links 

leading to places with a high attraction, but a great distance from the city center, thus 

highlighting the boundaries of the random trip distribution (i.e., restricted distance decay 

function) as discussed by Lohse (2011, p. 304) and Knepper (2021, p.80). Lohse sees potential 

for the application of the model until a city diameter of 6km, which in the case of Weimar fits for 

most locations (the mean distance between Weimar’s traffic zones is 3,2 km), but is exceeded for 

some locations on the outer part of the town (see Figure 9).  
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Figure 9: Lower part of the plot shows a comparison between the specified and restricted distance decay 

function in the Trip Distribution step. The upper part of the plot shows the distribution of distances between 
individual travel zones in Weimar. 

After discussing the overall precision of individual models, we look at the spatial distribution of 

the error to understand their source and implications for planning. For this purpose, we represent 

the deviation of the restricted models from the fully specified model as regression residuals8 and 

visualize them on the map (see Figure 10). The resulting Figure 10b, Figure 10c, and Figure 10d 

show the distribution of positive and negative residuals. The positive residuals represent 

locations where the model restriction leads to underestimating the traffic flow, while the negative 

residuals highlight locations where the restricted model expects more traffic than the fully 

specified model.  

 

When comparing all three restricted models, we observe the largest residuals (i.e., model 

inaccuracy) in M3 and M4, while in M2, the deviation from the base model is almost negligible, 

as confirmed by the high accuracy of the M2 model. The residual distribution in M3 and M4 

reveal a similar pattern of positive residuals in the city center and negative at the main radials at 

the outskirts. This pattern can be explained by the distribution of outgoing trips when considering 

the sociodemographic characteristic of the population and the distribution of economic activities. 

As shown in Figure 10a, the trip distribution is not equal as assumed in M3 and M4 but shows a 

 
8 Regression residuals are defined as the difference between observed and predicted values. In 
our case it is the difference between the fully specified model M1 and the values expected by the 
restricted models M2, M3 and M4. 
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higher concentration in the city center with a gradual fall-off towards the suburbs. The pattern is 

slightly disrupted by the presence of shopping malls.  

 

This heterogeneous loading of the network is in turn, represented in the model errors. As a result, 

the restricted models M3 and M4 perform well in low-traffic residential areas; however, they 

systematically under and overestimate the traffic flow on the main arteries.  

 

 

 
Figure 10a: Spatial distribution of the trip frequencies defined by the fully specified reference model M1. 

Figure 110b, c, d: Spatial distribution of model errors – residuals for b) M2 model, c) M3 model and d) M4 
model. The amplitude of the error is expressed by the line thickness while the valence is defined by color 

(red = positive residuals, blue = negative residuals).  

Consequently, the answer to the question about the optimal trade-off between model complexity 

and accuracy depends on the purpose of the model. The simplest M4 model (representing the 

Space Syntax approach) might be a great tool when understanding the overall movement 

structure or focusing on the residential low-traffic areas. However, when it comes to applications 

focused on planning high-traffic segments of the road network (e.g., designing road sections 

based on expected traffic load), the same model seems to be suffering from an unacceptable level 
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of systematic bias. These findings underline the need for informed model selection in a real-life 

urban planning context with different projects requiring different models. 

 

When it comes to model selection, we must also mention that the SSM and TPM do not only 

differ in their accuracy but also their interpretability. While the TPM provides as outcome a 

spatial distribution of traffic flow per time, the SSM is unitless. As a result, we know from SSM 

what is the expected relationship between frequency on two different streets (e.g., traffic 

frequency on street A is ten times more traffic than on street B), but we do not know how much it 

is in absolute terms. Thus, if the task is to design a street cross-section or allocate parking lots, 

the results of SSM might be difficult to interpret. 

 

Finally, we want to emphasize that this paper offers a methodological blueprint for the study of 

the trade-offs between complexity and accuracy of movement models; however, more evidence is 

needed to apply our results in practice. For a further and more precise quantification of the trade-

offs between different models, the study design for future studies needs to be extended and 

include comparisons on the level of the route assignment and a comparison with traffic loads 

observed in the real world. 
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