ING1102 Analysis and linear algebra
Course description for academic year 2017/2018
Contents and structure
The course contains the following subjects:
Functions of one real variable:
- The function concept and covariation of unknowns in applications
- Derivation and rate of change
- Integration as an antiderivative and as an area/Riemannsum
- Ordinary differential equations
Linear algebra:
- Vector and matrix representation
- Solving linear equation systems
- Vector space and linear mapping
- Eigen values and eigenvectors, diagonalization
- Bases and change of bases
Complex numbers
Basic programming
- constants, variables
- numbers, strings
- loops
- conditional branching
Achieving a basic understanding is the goal of the course. Central items include the use of functions in modelling practical problems, and algorithms for numerical solutions as an alternative to analytical methods of solutions.
The items above are further illustrated with appropriate examples.
Learning Outcome
Knowledge:
- The student is able to explain and exemplify the concepts of function, continuity, derivation, integration and differential equations.
- The student is able to explain and exemplify the central concepts within linear algebra, such as matrixes, linear equation systems, conditions for inverting matrixes, bases, and eigenvectors.
- The student is able to explain and exemplify the concepts of complex numbers and numerical algorithm.
Skills:
- The student is able to use derivation, integration, methods for solving differential equations, linear algebra, and numerical algorithms to solve mathematically formulated problems.
- The student is able to use mathematical notation to define and manipulate functions, integral, differential equations, complex numbers, vectors, and matrixes.
General Qualifications:
- The student is able to use the fact that change and change pr. unit of time may be measured, calculated, added, and used in equations.
- The student knows how to use mathematics to communicate a problem with a mathematical content.
- The student knows how to design, read, and communicate the contents of an algorithm designed to perform calculations on or find solutions to mathematical problems.
Entry requirements
None.
Recommended previous knowledge
Mathematics R1 + R2 from upper secondary school or equivalent.
Teaching methods
Lectures, workshop and/or work in the computer lab.
Regular lectures, exercises, laboratory work and similar activities will be given every third week. During the two weeks where there is no regular teaching, the students are expected to work on the subject by themselves or in teams and to follow course material that is made available online.
In special cases instruction will be given by an English speaking lecturer/guest lecturer. The exam will still be given in Norwegian.
Parts of the course might be given in Haugesund.
Compulsory learning activities
1: (Will be specified in the course plan by semester start.) Valid for the semester that the compulsory assignment is completed and the next semester.
2: Programming
Assessment
Written exam, 5 hours.
Graded scale: A - E / F (failed).
Examination support material
The University College's calculator (Casio fx-82Es) will be handed out.
More about examination support material