Hopp til innhald

MAB803 Matematikk 2, emne 1 - Matematikk som undersøkende og resonnerende virksomhet

Emneplan for studieåret 2017/2018

Innhold og oppbygning

Dette er emne 1 i faget Matematikk 2 for 1.- 7. trinn i grunnskolen. Emnet er knyttet til undervisning og læring innen klassiske matematiske tema som geometri og algebra. Det skal gi grunnlag for å utvikle faglig og didaktisk kunnskap for å planlegge, gjennomføre, vurdere og videreutvikle matematikkundervisning etter gjeldende læreplaner og i tråd med relevant forskning. Deltakernes yrkespraksis knyttes til studiene og brukes som utprøvingsarena og refleksjonsgrunnlag. De fem grunnleggende ferdigheter er et gjennomgående tema.

Emnet tar opp klassiske matematiske tema, som geometri og algebra. Disse temaene knyttes til utforskende virksomhet og prealgebra. Studier av matematiske argumentasjonsformer skal gi innsikt i hvordan fagets grunnleggende begrepsstrukturer dannes, og hvordan dette har betydning for undervisning og læring. Emnet gir dessuten innføring i matematikkdidaktisk forskning relevant for utvikling av undervisningskunnskap i matematikk. Her reflekteres det blant annet over læringssamtalens rolle. Generelt legges det vekt på undersøkende tilnærminger til matematiske tema, sammen med anledning til å gjennomføre egne matematiske oppdagelsesprosesser.

Læringsutbytte

Ved fullført emne skal studenten ha følgende totale læringsutbytte:

  • Inngående undervisningskunnskap knyttet til progresjonen i matematikkopplæringen innen geometri, prealgebra og algebra gjennom barneskolen og i overgangene fra barnehage til skole og fra barnetrinn til ungdomstrinn
  • Kunnskap om aspekter som undersøkes i matematikkdidaktikk som forskningsfelt
  • Kunnskap om euklidsk geometri, dens aksiomatiske oppbygging og emnets historiske betydning for matematikk og matematikkundervisning
  • Kunnskap om sentrale emner i algebra og geometri som eksempelvis likninger, liknings-systemer og trigonometri sammen med deres anvendelser
  • Kunnskap om hvordan viten i geometri og algebra utvikles gjennom undersøking, eksperimentering og påfølgende bevisføring
  • Kunnskap om ulike typer matematiske bevis- og argumentasjonsformer, særlig innen geometri og algebra
  • Inngående kunnskap om varierte muntlige og skriftlige uttrykksformer i matematikkfaget og hvordan valg av språkbruk gir didaktiske konsekvenser.
  • Undervisningskunnskap om flerspråklighet som ressurs i matematikkundervisning/-læring, og elevers begrepslæring på morsmål og norsk som andrespråk
  • Kjennskap til kvantitative og kvalitative metoder relevante for matematikkdidaktisk forskning

  • Arbeide selvstendig med matematikkdidaktiske forskningsartikler knyttet til geometri- og algebraundervisning og forstå deres relevans for utvikling og evaluering av matematikkundervisning på barnetrinnet
  • Bruke kvalitative forskningsmetoder til å gjennomføre matematikkdidaktiske undersøkelser
  • Arbeide teoriforankret og systematisk med kartlegging av matematikkvansker og opplæring tilpasset elever som har matematikkvansker, for eksempel gjennom strategiopplæring
  • Vurdere elevers læring i faget som grunnlag for tilrettelegging av undervisning og tilpasset opplæring
  • Tilrettelegge for og veilede elever i arbeid med utforskende aktiviteter, begrunnelser, argumenter og begynnende bevisføring i geometri og algebra
  • Undersøke sammenhenger og gjennomføre elementære bevis i geometri og algebra
  • Bidra i lokalt læreplanarbeid
  • Bruke IKT som hjelpemiddel for å arbeide undersøkende i matematikk, særlig geometri og algebra

  • Kan initiere og lede lokalt utviklingsarbeid knyttet til matematikkundervisning

Krav til forkunnskaper

Matematikk 1 trinn 1 - 7, eller tilsvarende.

Undervisnings- og læringsformer

Forelesninger, gruppearbeid, regneøvelser, uteaktiviteter, presentasjoner, kollokviearbeid, praksis.

Obligatorisk læringsaktivitet

Studenten skal levere tre skriftlige obligatoriske arbeidskrav. Nærmere informasjon om innleveringsfrister, innhold og form vil bli gitt ved studiestart.

Arbeidskravene leveres elektronisk via skolens nettbaserte studiesystem, Itslearning og vurderes av faglærer til godkjent/ikke godkjent. De skal gjenspeile didaktiske og matematikkfaglige kunnskaper. Noen av arbeidskravene skal ha tilknytning til egen praksis, mens andre skal vise studentens matematiske innsikt. Ett eller flere av kravene skal knyttes til utforskning ved hjelp av IKT-verktøy. Minst én av oppgavene skal gjøres gjenstand for kunnskapsdeling i eget kollegium. De rettes mot følgende tema:

1. Utforskning av matematiske bevis og argumentasjonsformer. Arbeidskravet knyttes til utprøving i praksis og skal inneholde en selvstendig analyse av utprøvningen. Analysen relateres til didaktisk forskningslitteratur.

2. Skriftlig matematisk oppgave om geometri og algebra. Oppgaven tilknyttes utforskning med et dynamisk geometriprogram.

3. Skriftlig didaktisk oppgave med utgangpunkt i ett eller flere matematiske tema i kurset. Oppgaven tilknyttes et av de fagdidaktiske temaene vurdering, matematikkvansker, tilpasset opplæring eller matematikkmestring. Den skal referere til didaktisk forskningslitteratur om det aktuelle temaet, og kan knyttes til praksis.

Obligatoriske arbeidskrav i de enkelte emnene må være godkjent senest tre uker før eksamen for å få gå opp til eksamen. Ved ikke godkjente obligatoriske arbeidskrav får studenten ett (1) nytt forsøk i inneværende kurs.

Godkjent arbeidskrav er gyldig i det påfølgende semesteret etter godkjenningen.

Vurderingsform

Muntlig eksamen, 30 minutter.

Tid og sted vil bli opplyst på emnets sider på Itslearning.

Karakterskala A-F, der F tilsvarer ikke bestått.

Hjelpemidler ved eksamen

Kalkulator og notater fra arbeidskrav 1.

Mer om hjelpemidler